Interaction of an ultrashort laser pulse and relativistic electron beam in a corrugated plasma channel.

نویسندگان

  • J P Palastro
  • T M Antonsen
چکیده

Copropagation of a laser pulse and a relativistic electron beam in a corrugated plasma channel has been proposed for the direct laser acceleration of electrons [Palastro, Phys. Rev. E 77, 036405 (2008)]. The corrugated plasma channel allows for the guiding of laser pulses composed of subluminal spatial harmonics. Phase matching between the electron beam and the spatial harmonics results in acceleration, but for high beam densities, the pulse energy can be rapidly depleted. This depletion may result in interaction times shorter than the waveguide length limited time or pulse length dephasing time. We present an analytic model and self-consistent simulations of the electron beam-laser pulse interaction. A linear dispersion relation is derived. The effect of the electron beam on the pulse after the occurrence of axial bunching is examined. Injection of axially modulated electron beams is also explored. In particular, we find that a properly phased electron beam can transfer energy to the laser pulse as an inverse process to acceleration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-phase-matched acceleration of electrons in a corrugated plasma channel

A laser pulse propagating in a corrugated plasma channel is composed of spatial harmonics whose phase velocities can be subluminal. The phase velocity of a spatial harmonic can be matched to the speed of a relativistic electron resulting in direct acceleration by the guided laser field in a plasma waveguide and linear energy gain over the interaction length. Here we examine the fully self-consi...

متن کامل

اثر کانال یونی بر خودکانونی شدن پالس لیزری گاؤسی در پلاسماهای کم چگال

 We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. T...

متن کامل

Study of non-linear interaction of circular laser pulse propagating through hot magnetized plasma in the presence of a planar magnetostatic wiggler

In this paper, the self-focusing property of an intense circularly polarized laser pulse in hot magnetized plasma is investigated theoretically. First, an envelope equation governing the spot-size of the laser beam for both left- and right-hand polarizations has been derived in the presence of a planar wiggler. Furthermore, non-linear dispersion relation of laser pulse is obtained by using Maxw...

متن کامل

Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction.

We demonstrate that a beam of x-ray radiation can be generated by simply focusing a single high-intensity laser pulse into a gas jet. A millimeter-scale laser-produced plasma creates, accelerates, and wiggles an ultrashort and relativistic electron bunch. As they propagate in the ion channel produced in the wake of the laser pulse, the accelerated electrons undergo betatron oscillations, genera...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009